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Non-Brittle Weak Formations
Weakly Cemented Formations

– Minimal Cementation, Soft & Weak
– Stress State

• Force Chains Fragile
– Easily Destroyed
– Minor Vibration or Shearing
– Grain Contact Dissolution
– Over-Pressurization

• Minimal Horizontal Stress Contrast
– Horizontal Stress Contrast can not be 

maintained over geological time
– Constitutive Behavior

• Ductile Frictional Behavior
• Anelastic
• Skempton’s B parameter
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Milk River Tight Gas Reservoir
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Non-Brittle Weak Formation
• E~3GPa c’~2.5MPa ϕ~35°UCS*~10MPa
• 40,000 wells conventionally stimulated
• CO2 fluid 20/40 sand 10tons/horizon
• Surface & Downhole Tiltmeter Arrays
• Injection Pressures ↑~40% at <400m depth
• Vertical ‘Fracs’ >400m Horiz ‘Fracs’ <400m
• Stress Crossover at 400m
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Milk River Reservoir Core Data

Shoreline Anisotropy

Continuous Cores of  Reservoir
• Weak mudstone shallow low energy deposition
• Thin sand lenses upward coarse grading
• Clear shoreline anisotropy
• Anelastic behavior from triaxial tests
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Milk River Tight Gas Reservoir

Shoreline Anisotropy

Stimulation Split Dilating Casing
• Cemented by Inner String
• Mechanically Split & Expanded
• 10% Radial Strain
• Locked in Open Position
• Multiple Wings intersect Formation
Shoreline Anisotropy

Hocking et al. 2011
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Conventional Stimulations
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Split Dilating Casing Stimulations

Time (min)

W
el

lh
ea

d
P

re
ss

ur
e

(M
P

a)

W
el

lh
ea

d
S

lu
rr

y
R

at
e

(m
3 /m

in
)

0 50 100 150 200
0

5

10

15

20

25

30

0

2

4

6

8

10
Pressure
Slurry Rate

A B C D E F G

PC-102-MEDHAT 2-8-16-3

MLKR C

MLKR B

MLKR A

X-Drain

Current

PC-102-MEDHAT 2-8-16-3

MLKR G

MLKR F

MLKR E

MLKR D

X-Drain

Current

vertical fracs



© GeoSierra 2013

ARMA 13-254 ● Comparisons of Plane Propagation from Dilating Casing and Conventional Perforations ● Grant Hocking
when Stimulating the Milk River Formation

Slide 11

Lessons Learnt
• Completion Method Controls the Outcome

– How do you interpret stimulation and shut-in 
pressure records?

– Mapping injected geometries only tells you of the 
outcome

– Stimulation thru’ perfs or open-hole do not excite 
least energy dissipating mechanism

– Frac initiation is essential
• Why? Non-Brittle Weak Formations

– Anelasticity
– Skempton’s B Parameter
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Brittle Ductile States

Brittle

DuctileDuctile
Frictional Plastic

Transitional 
Zone

Cavity Expansion
Bolton & Chin (1994)
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Anelasticity
Hysteresis strain lags
stress lost energy
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Anelasticity - Cylindrical Cavity
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Inclusion Tip and Mobility
Skempton’s B parameter
• >0.75 at low p’
• >0.5 at high p’ at significant depth

Inclusion Tip Mobility & Geometry
• negative pore pressure in front of tip
• inclusion clamped by apparent cohesion
• inclusion sucked into the unloaded zone
• remains on azimuth due to anelasticity

p

Soft u=p B=1
Stiff u=0 B=0
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Inclusion on Azimuth - Anelasticity
Process zone grows with 
inclusion length due to 
anelasticity resulting in a 
more robust propagating 
inclusion remaining on 
azimuth

Propagating inclusion remains on 
azimuth even with modest stress 
contrasts

Anelasticity, Skempton’s B parameter – no mention of plasticity



© GeoSierra 2013

ARMA 13-254 ● Comparisons of Plane Propagation from Dilating Casing and Conventional Perforations ● Grant Hocking
when Stimulating the Milk River Formation

Slide 17

Conventional Stimulations

PC-102-MEDHAT 2-8-16-3

MLKR C

MLKR B

MLKR A

X-Drain

Current

PC-102-MEDHAT 2-8-16-3

MLKR G

MLKR F

MLKR E

MLKR D

X-Drain

Current

vertical

horizontal

Time (min)

W
el

lh
ea

d
P

re
ss

ur
e

(M
P

a)

9.5 10 10.5 11 11.5 12
0

2

4

6

8

10

A B C E F G

D



© GeoSierra 2013

ARMA 13-254 ● Comparisons of Plane Propagation from Dilating Casing and Conventional Perforations ● Grant Hocking
when Stimulating the Milk River Formation
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Split Dilating Casing Stimulations
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Strong Shale Source RocksStrong Shale Source Rocks
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Strong Shale Source RocksStrong Shale Source Rocks
Brittleness Index:
• Young’s Modulus
• Poisson’s Ratio
• Mineralogy

Current Frac Target:
Highly Brittle low TOC
• Ability to frac
• Presumed complex frac pattern
High TOC less Brittle
• Frac initiation may be required
• Production data needed
• Potential proppant embedment
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ConclusionsConclusions
• Stimulation completion dictates the outcome

– Mini-Frac thru’ perfs or open-hole suspect in non-brittle weak 
formations

– Stimulation thru’ perfs will not excite least energy dissipating 
mechanism in non-brittle weak formations

– Essential to initiate frac in non-brittle formations
– Need to re-assess earlier stimulation data & experience

• Anelasticity defines need for frac initiation
– Frac fluid pressure efficiency α Q
– Frac fluid pressure alone may not initiate a frac in anelastic 

formations, whether strong or weak
– Brittleness Index to include anelasticity or lack of
– Quantify production data in high TOC less brittle shale zones
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– Mini-Frac thru’ perfs or open-hole suspect in non-brittle weak 
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– Stimulation thru’ perfs will not excite least energy dissipating 

mechanism in non-brittle weak formations
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• Anelasticity defines need for frac initiation
– Frac fluid pressure efficiency α Q
– Frac fluid pressure alone may not initiate a frac in anelastic 

formations, whether strong or weak
– Brittleness Index to include anelasticity or lack of
– Quantify production data in high TOC less brittle shale zones
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